Lithium Charger Testing (Hardware V00I)

I installed the Lithium cell charger chip and it’s associated components.  While I was soldering the components, I noticed that R5 wasn’t soldered correctly.  This is the current limiting resistor for the voltage boost circuit.  So I need to retest the boost circuit.

I then attached the cell and the radio led blinked once.(with no connection, this was expected)  I connected the USB from my computer into the circuit and D2 (Red) lit up. This is STAT1 signal from the charger IC. From Table 5 in the AAT3672 datasheet STAT1 on by itself indicates the system is fast charging the lithium cell.  I disconnected the Cell with the USB still connected, both D3 and D2 blinked until I reconnected the lithium cell and the system then went back to fast charge.

I grabbed my DMM and checked some voltages:

From USB: 4.65V (A Little low, but I have connected the Uprogrammer to a long USB cable for convenience)
Output to Board: 4.65 V (Matches input voltage)
Lithium Cell: 3.96 V (Good range for Fast Charge)

These voltages make sense, I am very happy with these results.  I waited a while to check the results again.  While I was waiting, I started doing some testing of the Voltage Boost Circuit.  With Just the boost circuit turned on, I measured 4.64 Volts on Vpp.  I checked the Duty and prescaler and they were set to 0 and 4 respectively.

I then set the duty cycle  and measured the voltage at Vpp

20% : 19.6 Volts
30% : 20.8 Volts
40%: 21.8 Volts
50%: 22.6 Volts

I played with the prescaler and the highest voltage I got was 24 Volts at 50% duty cycle and prescaler set to 9.  This is beyond design specification and has the potential to cause damage to the circuit, I don’t expect to do this in the future. I am happy to know that I have some margin in the design to if I need 20 Volts. I took the following image from my oscilloscope with a Prescaler of 4 and a duty cycle of 10% (25).

pre4duty25

I am not happy with the large steps setting the output voltage of the boost circuit.  I decided to load the circuit with a 10 K Resistor to see how it affected the output voltage.  I soldered a 1206 10K Resistor on top of C20. This lowered the output voltage for 10% with a prescaler of 4 down to 12.8 Volts  But the best voltage I could get out of the system was 18 Volts.  This also made Vpp a lot noisier(See scope image below), I want to add some more filtering.

pre4duty25w10k

I added a resistor to the schematic parallel to C20 and also a place for another capacitor.  The resistor I set the value to 20K as a starting point and the capacitor I set to 1 uF.  The 20 K resistor will draw less current and that should reduce the noise.  The capacitor will also reduce the noise and provide a larger reservoir for current changes when programming a target device.

After doing all this testing the lithium cell voltage was at 4.12 V. This is near a complete charge, I expected the system to go to complete charge very soon. This is indicated by the Green LED being on alone.

After it switched to charge complete, I grabbed my DMM and checked some voltages:

From USB: 5.05V (Minimal current draw so no Voltage drop through the USB cable)
Output to Board: 5.05 V (Still matches input voltage)
Lithium Cell: 4.19 V (4.2 Volts is maximum charge voltage for individual LiPo Cells)

The charging circuit is working as expected.  I disconnected the USB and the LEDs turned off. I re-connected the USB and the Red LED came on for a few minutes and then it went back to only the green LED on.

I have uploaded the updated schematic to GitHub, click the hardware link in the right hand column to go get it.

Do you have a circuit you want to test before layout? Do you have a design you are tinkering with?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.